دراین مقاله می خواهیم روشي براي به دست آوردن کوتاه ترين مسير بين دو نقطه ي دلخواه كه روي سطح استوانه اي شكلي هستند ، ارائه كنيم .
دو نقطه ي A و B را روی سطح استوانه درنظر می گیریم.عمودهای ،
را برقاعده ي استوانه وارد می کنیم . طول های دو عمود
و
و کمان
(كمان كوچك تر را در نظر بگيريد.)از قاعده ي استوانه را اندازه می گیریم و آن هارا به ترتیب c,b,a می نامیم .
ذوزنقه ي قائم الزاویه ي را که در آن طول های
به ترتیب برابر c,b,a می باشند و هم چنین نيم خط
که موازی
است را درنظر می گیریم . پاره خط
را به وسیله ي نقطه هاي
و …. به n قسمت مساوی تقسیم می کنیم . از این نقطه ها ،خط هایی موازی با
رسم می کنیم ونقطه هاي برخورد آن ها را با
به ترتیب:
و ….. و با نيم خط
به ترتیب :
و…. می نامیم .
طبق قضیه ي تالس در مثلث داریم :
(چون نقطه ها را روی پاره خط با فاصله هاي مساوی انتخاب کرده ایم .)
نسبتي كه با نوشتن رابطه اي نظير رابطه ي اخير درمثلث به دست مي آيد،
است و…. درمثلث
این مقدار به
می رسد . پس داریم :
برروی کمان از قاعده ي استوانه، نقطه هاي
و…. را چنان انتخاب می کنیم(شكل 1) که طول کمان های
و… برابر طول پاره خط های
و…ازشکل (2) باشد . روی مولدهایی از استوانه که از نقطه هاي
و …می گذرند ، طول های
و… را انتقال می دهیم .
نقطه هاي E,D,C,…كه به اين روش بر سطح استوانه به دست می آیند ، تعداد زیادی نقطه از كوتاه ترين مسير ممكن بين نقطه هاي B,A را مشخص مي كنند . هر چقدر n بزرگ تر باشد با دقت بهتري مي توان كوتاه ترين مسير را رسم كرد .
منبع: كتاب هندسه دلپذير
نوشته ي : دكتر احمد شرف الدين