رابطه اي شگفت آور در مثلث

مثلث دلخواه ABC را در نظر بگیرید.اگرF,E,D به ترتیب وسط های ضلع هایBC,AC,ABباشند،بنابراین1 و 2 می باشند و طول خط شکسته ي BDFEC برابراست با :

3

4

گر L,K,J,I,H,G به ترتیب وسط های ضلع های EC,FC,EF,DF,BF,BD باشند،آن گاه طول خط شکسته ي BGHIFJKLC برابر است با :5

اکنون اگر این روند را ادامه دهیم ،خط های شکسته به ضلع BC نزدیک و نزدیک تر شده و این در حالی است که طول تمامی این خط ها برابرAB+AC است.
با ادامه ی این روند تا بی نهایت خواهیم داشت: AB+AC=BC
آیا به نظر شما این مطلب با این واقعیت که:
مجموع طول های دو ضلع هر مثلث از طول ضلع سوم بزرگ تر است،ساز گار است؟
چگونه این مطلب را توجیه می کنید؟

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *